Operating Systems (Fall/Winter 2018)

Synchronization: Another Perspective

Yajin Zhou (http://yajin.orqg)

Zhejiang University

Credit: https://cs61.seas.harvard.edu/site/2018/

http://yajin.org

[Last t1

e \We looked at locks

* Two operations: acquire and release

e At most one thread can hold a lock at a time

e Can use to enforce mutual exclusion and critical
sections

* Considered how to efficiently implement

Stephen Chong, Harvard University

Higher-level synchronization
primitives

e We have looked at one synchronization primitive: locks

 Locks are useful for many things, but sometimes programs have
different requirements.

e Examples?

e Say we had a shared variable where we wanted any number of threads to read
the variable, but only one thread to write it.

 How would you do this with locks?

Reader() { Writer() {
acquire(lock); acquire(lock);
mycopy = shared_var; shared_var = NEW_VALUE;

release(lock); release(lock);
return mycopy; }

What's wrong with this code?

e Semaphores

e Condition variables
e Monitors

Stephen Chong, Harvard University

Semaphores

»
-
-
Y

e Higher-level synchronization | . Semaphore P
construct | e 3

< PR
ﬁ‘..‘~
Bt
)

e Designed by Edsger Dijkstra in the
1960's

e Semaphore is a shared counter

e Two operations on semaphores:

* P() or wait() or down() e e A
oS pEE ’ i

« From Dutch proeberen,
meaning “test”

« Atomic action: Wait for semaphore value to become > 0, then decrement it
* V() or signal() or up()
« From Dutch verhogen, meaning “increment”

* Atomic action: Increment semaphore value by 1.

Semaphore Example

e Semaphores can be used to implement locks:

Semaphore my_semaphore = 1; // Initialize to nonzero
int withdraw(account, amount) {

wait(my_semaphore);

balance = get_balance(account);
balance -= amount; > critical section
put_balance(account, balance);
signhal(my_semaphore);

return balance;

¥

* A semaphore where the counter value is only 0 or 1
is called a binary semaphore.

e Essentially the same as a lock.

Simple Semaphore Implementation

struct semaphore {
int val;
thread_list waiting; // List of threads waiting for semaphore

wait(semaphore Sem): // Wait until > @ then decrement

while (Sem.val <= @) {
add this thread to Sem.waiting;

block(this thread): >

¥
Sem.val = Sem.val - 1;
return,;)

wait() and signal() must

be atomic actions!
signal(semaphore Sem):// Increment value and wake up next thread ‘K////

Sem.val = Sem.val + 1;

1f (Sem.waiting is nonempty) {
remove a thread T from Sem.waiting; ’
wakeup(T);

Simple Semaphore Implementation

struct semaphore {
int val;
thread_list waiting; // List of threads waiting for semaphore

wait(semaphore Sem): // Wait until > @ then decrement - ~

while (Sem.val <= 0) { o . . .
add this thread to Sem.waiting; Why is this a while

block(this thread); loop, and not an if?

¥
Sem.val = Sem.val - 1; * : / A
return; wait could be called by

another thread while
this thread is waiting

signal(semaphore Sem):// Increment value and wake up next thread
Sem.val = Sem.val + 1;
1f (Sem.waiting is nonempty) {
remove a thread T from Sem.waiting;
wakeup(T);

J

Semaphore Implementation

* How do we ensure that the semaphore
implementation is atomic?

* One option: use a lock for wait() and signal()

e Make

executeo

SU

e that only one wait() or signal() can be

e Need to

pe careful to release

acquire lock on waking up

by any process at a t

Ime

ock before sleeping,

e Another option: hardware support

Why are semaphores useful?

e A binary semaphore (counter is always O or 1) is basically
a lock.

e Start with semaphore value =1
* acquire() = wait()

e release() = signal()

* The real value of semaphores becomes apparent when the
counter can be initialized to a value other than O or 1.

The Producer/Consumer Problem

e Also called the Bounded Buffer problem M donute
3“1% _,

: fd,
‘ { ¥)
r_ — ‘ |
A e -
- N b
\ e

Producer / e
A Consumer

. Producer pushes items into the buffer.
e Consumer pulls items from the bulffer.
e Producer needs to wait when buffer is full.

e Consumer needs to wait when the buffer is
empty.

The Producer/Consumer Problem

* Also called the Bounded Buffer problem. .

| J J
Producer /= .
Y] Consumer

e Producer pushes items into the buffer.

e Consumer pulls items from the bulffer.
e Producer needs to wait when buffer is full.

e Consumer needs to wait when the buffer is
empty.

An implementation

&
%

Ny L‘% 2)

Mmmm... donuts

{0 1A nn 00\
'I‘ u-"!,. Vi " O

IA\V) ™
L \
~ -

S ers—)
.

int count = 0;

Producer() {
int item;
while (TRUE) {

1tem = bake();

1f (count == N) sleep(Q);

insert_item(item);

count = count + 1;

1f (count == 1)
wakeup(consumer);

Consumer() {

int 1tem;

while (TRUE) {
1f (count == @) sleep();
1tem = remove_item();
count = count - 1;
1f (count == N-1)

wakeup(producer);

eat(item);

*\What's wrong with this code?

An implementation

B
%

A)

Mmmm... donuts

7)) & anclat @
(O 1lAnn T\
e A INWRY
AV} "

wiy| il mis)

"' .’:' {
e

int count = 0;

Producer() {

int item;

while (TRUE) {
i1tem = bake();
1f (count == N) sleep(Q);
insert_item(item);
count = count + 1;
1f (count == 1)

wakeup(consumer);

e D
Access to count
not synchronized

U J

 What if we context
switch between the

test and sleep?
N J

Consumer() {
int 1tem;
while (TRUE) {
1f (count ==

ount = count - 1;
1f (count == N-1)
wakeup(producer);
eat(item);
3

*\What's wrong with this code?

An implementation with semaphores

| Mmmm... donuts

P

\ < ’ s 3

S’ S ey)
a2 of € -
£) 1A nn 08\
(v ’l', VINITN
g A "“ L

<b~-‘ g
'y]

~

Semaphore mutex = 1; Consumer() {
Semaphore empty = N; int i1tem;
Semaphore full = 0; while (TRUE) {

wait(full);
Producer() { wait(mutex);

int item; 1tem = remove_item();
while (TRUE) { signal(mutex);

item = bake(); signal(empty);

wait(empty); eat(item);
wait(mutex); ks
insert_item(item); } -

signal(mutex); > ™ Otherwise a thread could

signal(full); Why is it important that acquire mutex and wait for
wait(empty) is before empty; prevent another thread

wait(mutex)? acquiring mutex. DEADLOCK!

(more on this next week)
_ y,

\

Semaphore library

e There are POSIX semaphores, but they are not part of
the pthreads library

* All semaphore functions are declared in semaphore.h
* The semaphore type is a sem_t.

* Intialize: sem_1n1t(&theSem, 0, initialVal);
e Wait: sem_walt(&theSem);

*Signal: sem_post(&theSem);

e Get the current value of the semaphore:
sem_getvalue(&theSem, &result);

[ssues with Semaphores

* Much of the power of semaphores derives from
calls to wait() and signal() that are unmatched

*See previous example!

e Unlike locks, where acquire() and release() are always
naired.

*This means it is a lot easier to get into trouble
with semaphores.

e Semaphores are a lot of rope to tie yourself in knots
with...

Condition Variables

A condition variable represents some condition that a thread can:
e Wait on, until the condition occurs; or
e Notify other waiting threads that the condition has occurred

e Very useful primitive for signaling between threads.
Condition variable indicates an event; cannot store or retrieve a value from a CV
Three operations on condition variables:

e wait() — Block until another thread calls signal () or broadcast() on the CV
e signal () — Wake up one thread waiting on the CV
e broadcast() — Wake up all threads waiting on the CV

In Pthreads, the CV type is a pthread_cond_t.
Use pthread_cond_1in1t() to initialize
pthread_cond_wait(&theCV, &somelLock);
pthread_cond_signal (&the(V);
pthread_cond_broadcast(&theCV);

Using Condition Variables

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /=_Thread 8 =/
pthread_mutex_lock(&myLock);

pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_cond_wait(&myCV, if (counter == 10) {
&myLock) ; pthread_cond_signal (&myCV);

: ¥
pthread_mutex_unlock(&myLock);

pthread_mutex_unlock(&myLock);

* In pthreads, all condition variable operations must be
performed while a mutex is locked!!!

e Why is the lock necessary?

Using Condition Variables

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /=_Thread 8 =/
pthread_mutex_lock(&myLock);

pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_cond_wait(&myCV, if (counter == 10) {
&myLock) ; pthread_cond_signal (&myCV);

: ¥
pthread_mutex_unlock(&myLock);

pthread_mutex_unlock(&myLock);

e |f no lock on Thread A:

e Might wait after another thread sets counter to 10

e |f no lock on Thread B:

e No guarantee that increment and test is atomic

Using Condition Variables

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /* Thread B */
pthread_mutex_lock(&myLock); pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_cond_wait(&myCV, if (counter == 10) {
&myLock) ; pthread_cond_signal (&myCV);

1 }

pthread_mutex_unlock(&myLock); pthread_mutex_unlock(&myLock);

e What happens to the lock when you call wait on the CV?

Using Condition Variables

o e
pthread_mutex_t mylLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /* Thread B */

pthread_mutex_locdt&myLock); pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_cond_wait(&myCV, if (counter == 10) {
&myLock) ; pthread_cond_signal (&myCV);

1 }

pthread_mutex_unlock(&myLock); pthread_mutex_unlock(&myLock);

Using Condition Variables

/ N

—)

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */

while (counter < 10) {
pthread_cond_wait(&myCV,

&myLock);
¥

pthread_mutex_unlock(&myLock);

pth read_mutex_locki &myLock) ; i{

/* Thread B */
pthread_mutex_lock(&myLock);

counter++;

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

Using Condition Variables

/ N

—)

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

&myLock);
¥

pthread_mutex_unlock(&myLock);

while (counter < %E) { i{
pthread_cond_wait(&myCV,

/* Thread B */
pthread_mutex_lock(&myLock);

counter++;

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

Using Condition Variables

- e

pthread_mutex_t mylLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

while (counter < 10) {

pth read_cond %

&myLock);
¥

pthread_mutex_unlock(&myLock);

/* Thread B */
pthread_mutex_lock(&myLock);

counter++,

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

e walt() released the lock while Thread A is sleeping

* That is why pthreads requires that the myLock is passed in

Using Condition Variables

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

while (counter < 10) {

pth read_cond %

&myLock);
¥

pthread_mutex_unlock(&myLock);

/* Thread B */
pthread_mutex_lock(&myLock);

counter++;

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

Using Condition Variables

N

—_

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /* Thread B */

pthread_mutex_lock(&myLock); pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_ cond“@&myﬁ%— S |if Ccounter == 10) {

gmyLock); pthread_cond_signal (&myCV);
1 ¥

pthread_mutex_unlock(&myLock); pthread_mutex_unlock(&myLock);

e signal () wakes up Thread A, but Thread A cannot
proceed. Why?
e Thread A requires lock to continue. Lock is still held by Thread B

Using Condition Variables

- e

pthread_mutex_t mylLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

while (counter < 10) {

pth read_cond %

&myLock);
¥

pthread_mutex_unlock(&myLock);

/* Thread B */
pthread_mutex_lock(&myLock);

counter++,

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

e signal () wakes up Thread A, but Thread A cannot

proceed. Why?

e Thread A requires lock to continue. Lock is still held by Thread B

Using Condition Variables

N

—_

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

&mylLock);
¥

pthread_mutex_unlock(&myLock);

while (counter < 10) {
pth read_cond_wﬁ_{g

/* Thread B */
pthread_mutex_lock(&myLock);

counter++,

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

e Once Thread B releases lock, Thread A can acquire it and

continue running

Using Condition Variables

/ N

—)

pthread_mutex_t myLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */
pthread_mutex_lock(&myLock);

while (counter < 10) {
pthread_cond_wait(&myCV,

&myLock);

¥ 4—7/\5

pthread_mutex_unlock(&myLock);

/* Thread B */
pthread_mutex_lock(&myLock);

counter++;

i1f (counter == 10) {
pthread_cond_signal (&myCV);

h

pthread_mutex_unlock(&myLock);

Using Condition Variables

' “ \7
B
pthread_mutex_t mylLock;

pthread_cond_t myCV;
int counter = 0;

/* Thread A */ /* Thread B */

pthread_mutex_lock(&myLock); pthread_mutex_lock(&myLock);

while (counter < 10) { counter++;

pthread_cond_wait(&myCV, if (counter == 10) {
&myLock) ; pthread_cond_signal (&myCV);

1 }

pthread_mutex_unlock(&myLock); pthread_mutex_unlock(&myLock);

e Key ideas
e wait() on a CV releases the lock
e signal() on a CV wakes up a thread waiting on the CV

e The thread that wakes up has to re-acquire the lock before wait() returns

Bounded bufter using CVs

KL

Prc

int theArray[ARRAY_SIZE], size;

pthread_mutex_t thelLock;
pthread_cond_t the(CV;

/* Initialize */
pthread_mutex_init(&theLock, NULL);
pthread_condvar_init(&theCV, NULL);

void put(int val) {
pthread_mutex_lock(&thelLock);
while (size ARRAY_SIZE) {
pthread_cond_wait(&theCV,

&thelLock);
¥
addItemToArray(val);
Size++;
1f (size == 1) {
pthread_cond_signal (&the(V);
¥

pthread_mutex_unlock(&thelLock);

Mmmm... donuts

"

s
g

"

o
t“;

%

I""‘
)‘:‘s’

int getO {

int item;
pthread_mutex_lock(&thelLock);
while (size 0) {
pthread_cond_wait(&theCV,
&thelLock);

¥

1tem =

size--;

1f (size ARRAY_SIZE-1) {
pthread_cond_signal (&theCV);

getItemFromArray();

¥
pthread_mutex_unlock(&thelLock);

return item;

Bounded bufter using CVs

P

Prc

int theArray[ARRAY_SIZE], size;

pthread_mutex_t thelock;
pthread_cond_t the(CV;

/* Initialize */
pthread_mutex_init(&theLock, NULL);
pthread_condvar_init(&theCV, NULL);

void put(int val) {
pthread_mutex_lock(&thelLock);
while (size ARRAY_SIZE) {
pthread_cond_wait(&theCV,

&thelLock);
¥
addItemToArray(val);
Size++;
1f (size == 1) {
pthread_cond_signal (&the(V);
¥

pthread_mutex_unlock(&thelLock);

\

size=0
TO GET AND WAIT
T1 GET AND WATI

T2 put, size =1, wakeup TO
T3 put, size =2

TO hold lock, get item,
size =1, release lock

r . :
Assumes only a single thread calling
put() or get() at a time! onuts
If two threads call get(), then two
< | threads call put(), only one will be
{ woken up!!
'\-“:-;_‘____ / \ ')-LS S ’ .
int get(Q) {
int item;

pthread_mutex_lock(&thelLock);
while (size 0) {
pthread_cond_wait(&theCV,
&thelLock);

¥

1tem =

size--;

if (size ARRAY_SIZE-1) {
pthread_cond_signal (&theCV);

getItemFromArray();

h
pthread_mutex_unlock(&thelLock);

return item;

yajin

yajin
size = 0
T0 GET AND WAIT
T1 GET AND WATI

T2 put, size =1, wakeup T0
T3 put, size =2

T0 hold lock, get item,
size =1, release lock

yajin

Bounded bufter using CVs

~
: : lonuts
Y One fix: always signal
i A
int theArray[ARRAY_SIZE], size; . .
pthread_mutex_t thelock; % Less efficient but OK.
pthread_cond_t theCV; '
/* Initialize */ int getO) {”“x“
Pr(pthread_mutex_init(&theLock, NULL); : : .
" q - heC . 1nt 1tem;
pthread_condvar_init(&theCV, NULL); pthread_mutex_lock(&theLock);
hil lze == 0
void put(int val) 1{ o Stﬁiézz cond)wéit(&ther,
pthread_mutex_lock(&theLock); - - &thelLock):
while (size == ARRAY_SIZE) { 1 ’
pthread_cond_walt(gtEeEV,k . item = getItemFromArray();
} thelock); size--;
anItemToArray(val); pthread_cond_signal (&theCV);
Size++;

A 5 Aol T pthread_mutex_unlock(&thelLock);
pthread_cond_signal (&theCV); return item:
pthread_mutex_unlock(&thelLock); .

ks

Bounded bufter using CVs

Pl

Prc

int theArray[ARRAY_SIZE], size;

pthread_mutex_t thelLock;
pthread_cond_t the(CV;

/* Initialize */
pthread_mutex_init(&theLock, NULL);
pthread_condvar_init(&theCV, NULL);

void put(int val) {
pthread_mutex_lock(&thelLock);
while (size == ARRAY_SIZE) {
pthread_cond_wait(&theCV,
&thelock);

ks
addItemToArray(val);
Size++;

if (size == 1) {

‘:‘_’.

pthread_cond_broadcast(&theCV);

5
pthread_mutex_unlock(&thelLock);

&

Another fix: use broadcast()

Wakes up all threads when the condition
changes. Note: Only one thread will grab the
lock when it wakes up. The others wake up and
immediately wait to acquire the lock again.

';r:;.::: WA KW l -

int get() {
int item;
pthread_mutex_lock(&thelLock);
while (size == 0) {
pthread_cond_wait(&theCV,

&thelLock);
Iy
1tem = getItemFromArray();
size--;

1f (size == ARRAY_SIZE-1) {

pthread_cond_broadcast(&theCV);

¥
pthread_mutex_unlock(&thelLock);

return item;

Monitors

e A monitor uses this style of locks and condition variables to protect
resources and coordinate threads

e A monitor is an object containing variables, condition variables,
and methods

monitor M {
o int size, theArray[ARRAY_SIZE];
At most one thread Cdn ConditionVariable emptyFull;

be active in a monitor void put(int x) {
. 1f (size == ARRAY_SIZE) wait(emptyFull);
at a time theArray[size] = Xx;
Slze++;
1f (size == 1) broadcast(emptyFull);
}

int get() {
1f (size == 0) wait(emptyFull);
size--;
1f (size == ARRAY_SIZE-1) broadcast(emptyFull);
return theArray[size];

The Big Picture

e Getting synchronization right is hard!

eEven your TFs and faculty have been known to get it
wrong.

e Testing isn’'t enough.
* Need to assume worst case: all interleavings are possible

*\We need to synchronize for correctness
e Unsynchronized code can cause incorrect behavior

e But too much synchronization means threads spend a
lot of time waiting, not performing productive work.

yajin

The Big Picture

 How to choose between locks, semaphores, condition variables,
monitors?

e Locks are very simple and suitable for many cases.

e [ssues: Maybe not the most efficient solution

e For example, can't allow multiple readers but one writer inside a standard
ock.

e Condition variables allow threads to sleep while holding a lock

e Just be sure you understand whether they use Mesa or Hoare semantics!

e Semaphores provide pretty general functionality

e But also make it really easy to botch things up.

e Monitors are a “pattern” for using locks and condition variables
that is often very useful.

